
10. Host Interface Bus 

A host processor can communicate with the TMS34010 by means of an 
interface bus consisting of a 16-bit data path and several transfer-control 
signals. The TMS34010's host interface provides a host with access to four 
programmable 16-bit registers (resident on the TMS34010), which are 
mapped into four locations in the host processor's memory or I/O address 
space. Through this interface, commands, status information, and data are a, 
transferred between the TMS34010 and host processor. 

A host processor may read from or write to TMS34010 local memory indirectly 
via an autoincrementing address register and data port. This optional 
autoincrement feature supports efficient block moves. The TMS34010 and 
host can send interrupt requests to each other. A pin is dedicated to the in-
terrupt request from the TMS34010 to the host. To allow block moves initi-
ated by a host to take place more efficiently, the host may suspend TMS34010 
program execution to eliminate contention with the TMS34010 for local 
memory. DRAM-refresh and screen-refresh cycles continue to occur while the 
TMS34010 is halted. 

This section includes the following topics: 

Section 	 Page 
10.1 Host Interface Bus Pins 	  10 - 2 
10.2 Host Interface Registers 	  10 - 2 
10.3 Host Register Reads and Writes 	  10-4 
10.4 Bandwidth 	  10 - 22 
10.5 Worst-Case Delay 	  10-23 
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Host Interface Bus - Pins/Registers 

10.1 Host Interface Bus Pins 

The GSP's host interface bus consists of a 16-bit bidirectional data bus and 
nine control lines. These signals are described in detail in Section 2. 

HDO-HD15 
form a 16-bit bidirectional bus, used to transfer data between the 
GSP and a host processor. 

HCS 	is the host chip select signal. It is driven active low to allow a host 
processor to access one of the host interface registers. 

HFSO, HFS1 
are function select pins. They specify which of four host interface 
registers a host will access (see Section 10.2). 

HREAD is driven active low to allow a host processor to read the contents 
of the selected host interface register, output on HDO-HD15. 

HWRITE is driven active low to allow a host processor to write the contents 
of H DO-H D15 to the selected host interface register. 

HLDS 	is driven low to enable a host processor to access the lower byte 
of the selected host interface register. 

	

HUDS 	is driven low to enable a host processor to access the upper byte 
of the selected host interface register. 

	

- HRDY 	informs a host processor when the GSP is ready to complete an 
access cycle initiated by the host. 

HINT 	transmits interrupt requests from the GSP to a host processor. 

10.2 Host Interface Registers 

The host interface registers are a subset of the I/O registers discussed in Sec-
tion 6. The host interface registers can be accessed by both the GSP and the 
host processor. These registers occupy four 16-bit locations in the host 
processor's memory or I/O address map. One of these four locations is se-
lected by placing a particular code on the two function select inputs, HFSO 
and HFS1, as shown in Table 10-1. A 16-bit host processor will typically 
connect two of its low-order address lines to HFSO and HFS1. An 8-bit pro-
cessor typically connects two low-order address lines to HFSO-HFS1 and uses 
a third low-order address bit to enable either the upper or lower byte of the 
selected register by activating one of the byte select inputs, HUDS or HLDS. 
In the second case, the registers occupy eight 8-bit locations in the host 
processor's memory map. 
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Table 10-1. Host Interface Register Selection 

HFS1 HFSO Selected 
Register 

0 0 HSTADRL 

0 1 HSTADRH 

1 0 HSTDATA 

1 1 HSTCTL 

HSTADRL and HSTADRH contain the 16 LSBs and 16 MSBs, respectively, 
of a 32-bit pointer address. A host processor uses this address to indirectly 
access GSP local memory. 

The HSTDATA register buffers data that is transferred through the host in-
terface between GSP local memory and a host processor. HSTDATA contains 
the contents of the address pointed to by the HSTADRL and HSTADRH reg-
isters. 

The HSTCTL register is accessible to the GSP as two separate I/O registers, 
HSTCTLL and HSTCTLH, but is accessed by a host processor as a single 
16-bit register. HSTCTL contains several programmable fields that control 
host interface functions. 

NMI. Nonmaskable interrupt, bit 8. Allows a host processor to interrupt 
GSP execution. 

NMIM. NMI mode, bit 9. Specifies if the context of an interrupted pro- 
gram is saved when a nonmaskable interrupt occurs. 

CF. Cache flush, bit 14. Setting this bit flushes the contents of the GSP 
instruction cache. A host processor can force the GSP to execute new 
code after a download by flushing old instructions out of cache. 

LBL. Lower byte last, bit 13. Specifies which byte of a register an 8-bit 
host processor will access first. 

/NCR. Increment address before local read, bit 12. Controls whether the 
32-bit pointer in the HSTADR registers will be incremented before being 
used in a local read cycle that updates the HSTDATA register. 

INCW. Increment address after local write, bit 11. Controls whether the 
32-bit pointer in the HSTADR registers will be incremented after being 
used in a local write cycle that transfers the contents of the HSTDATA 
register to memory. 

HLT. Halt GSP program execution, bit 15. A host processor can halt the 
TMS34010's on-chip processor by setting this bit to 1. 

MSGIN. Message in, bits 0-2. Buffers a 3-bit interrupt message from a 
host processor to the GSP. 

INTIN. Input interrupt bit, bit 3. A host must load a 1 into this bit to 
generate an interrupt request to the GSP. 

MSGOUT. Message out, bits 4-6. Buffers a 3-bit interrupt message from 
the GSP to a host. 

INTOUT. Interrupt out, bit 7. The GSP must load a 1 to this bit to send 
an interrupt request to a host processor. 

C>C7 

\ 
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Host Interface Bus - Reads and Writes 

10.3 Host Register Reads and Writes 

Host interface read and write cycles  are initiated by the host processor  and are 
controlled by means of the HCS, HWRITE, HREAD, HUDS, and HLDS signals. 
Host-initiated accesses of the register selected by the function-select code 
input on HFSO and HFS1 are controlled as follows: 

• While HCS, HLDS, and HWRITE are active low, the contents of 

H DO-H D7 are latched into the lower byte of the selected register. 

• While HCS, HUDS, and HWRITE are active low, the contents of 

HD8-HD15 are latched into the upper byte of the selected register. 

• While HCS, HLDS, and HREAD are active low, the contents of the lower 
byte of the selected register are driven onto HDO-H D7. 

• While HCS, HUDS, and HREAD are active low, the contents of the upper 
byte of the selected register are driven onto H D8-H D15. 

As this list indicates, at least three control signals must be active at the same 
time to initiate an access. The last of the three signals to become active begins 
the access, and the first of the three signals to become inactive signals the end 
of the access. A signal that begins or completes an access is referred to in the 
following discussion as the strobe signal for the cycle. Any of the signals 
listed above may be a strobe. Figure 10-1 shows a functional representation 
of the logic that controls the GSP's host interface. 

TM834010 

Figure 10-1. Equivalent Circuit of Host Interface Control Signals 
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Host Interface Bus - Reads and Writes 

The designer must ensure that HREAD and HWRITE are never active low si-
multaneously during an access of a host interface register; this may cause in-
ternal damage to the device. 

10.3.1 Functional Timing Examples 

The functional timing examples in this section are based on the circuit shown 
in Figure 10-1. 

• The HCS input is the strobe in Figure 10-2 and Figure 10-3. 

• The HWRITE signal is the strobe in Figure 10-4. 

• The HREAD signal is the strobe in Figure 10-5. 

• The HUDS and HLDS signals are strobes in Figure 10-6 and Figure 10-7. 
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Figure 10-2. Host 8-Bit Write with HCS Used as Strobe 
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Figure 10-3. Host 8-Bit Read with HCS Used as Strobe 
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Figure 10-4. Host 16-Bit Read with HREAD Used as Strobe 
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Figure 10-5. Host 16-Bit Write with HWRITE Used as Strobe 
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Figure 10-6. Host 16-Bit Write with HLDS, HUDS Used as Strobes 
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HFSO-HFS1 Valid %lotion Boloot 

HOS 

HwRrrE 

HREAD 

Strobe Low Byter--  
HLDS 

-- \Strobe High Byte 
HODS 

HDO-HD15 

  

Valid Data Out 

  

    

      

HRDY 	 (High) 

  

    

Figure 10-7. Host 16-Bit Read with HLDS, HUDS Used as Strobes 

10.3.2 Ready Signal to Host 

The default state of the bus ready output pin, HRDY, is active high. HRDY is 
driven inactive low to force the host processor to wait in circumstances in 
which the GSP is not prepared to allow a host-initiated register access to be 
completed immediately. 

HRDY is always driven low for a brief period at the beginning of a read or 
write access of the HSTCTL register. When the host attempts to read from or 
write to the HSTCTL register, HRDY is driven low at the beginning of the ac-
cess, and is driven high again after a brief interval of one to two local clock 
cycles. 

When the host processor performs certain types of host interface register ac-
cesses, a local memory cycle results. For example, in reading from or writing 
to the HSTDATA register, a read or write cycle on the local bus will result. If 
the host processor attempts to perform an access that will initiate a second 
local memory cycle before the GSP has had sufficient time to complete the 
first, the GSP will drive its HRDY output low to indicate that the host must 
wait before completing the access. When the GSP has completed the local 
memory cycle resulting from the previous access, it drives HRDY high to in-
dicate that the host processor can now complete its second access. 
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A data transfer through  the host interface takes place  only when some com-
bination of HCS, HREAD, HWRITE, HUDS, and HLDS are active simultaneously; 
however, the HRDY signal is activated by the HCS input alone. HRDY can be 
active-low only while the GSP is chip-selected by the host processor, that is, 
only when I-ICS is active low. A high-to-low transition on HRDY follows a 
high-to-low transition on HCS. The benefit of this mode of operation is that 
HRDY becomes valid as soon as HCS goes low,  which typically is early in the 
cycle. HRDY is always driven high when HCS is inactive high. 

A transient low level on the HCS input may cause a corresponding low pulse 
on the HRDY output. Systems that cannot tolerate such transient signals must 
be designed to prevent I-ICS from going low except during a valid host inter-
face access. 

In summary, the following rules govern the HRDY output: 

1) If a high-to-low HCS transition occurs while the GSP is still completing 
a local memory cycle resulting from a previous host-indirect access, 
HRDY will go low. If the register selected is HSTDATA, HSTADRL or 
HSTADRH, HRDY will remain low until the local memory cycle is com-
pleted. If the register selected is HSTCTL, the HRDY output will remain 
low for one to two local clock periods. 

2) If the host is given a ready signal (HRDY high) to allow it to complete 
a register access that will cause a local memory read or write cycle, 
HRDY stays high to the end of the access. The  access ends when  the 
strobe for the cycle ends. The strobe ends when  HREAD and HWRITE are 
both inactive high, or when HLDS and HUDS are both inactive high, or 
when FICS is inactive high, whichever is the first to occur. As soon as 
the strobe ends, a low level on FICS will allow HRDY to go low again. 
If the strobe is an input other than -C,  and HCS remains low after the 
strobe ends, HRDY can go low as a delay from the end of the  strobe. If 
FICS is the strobe for the access, the access ends when HCS goes high, 
and HRDY can go low again as soon as HCS goes low again. 

3) If HSTCTL is selected (FSO = FS1 = 1) at the high-to-low transition 
of HCS,  HRDY vvill go low as a delay from the fall of HCS, and will remain 
low for one to two local clock periods. To avoid a low-going pulse on 
HRDY when accessing a register other than HSTCTL, FSO-FS1 should 
be valid prior to the high-to-low transition of FC. 

Figure 10-8 and Figure 10-9 (page 10-10) show examples of host interface 
register accesses in which HRDY is driven low. 
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HFSO-HFS1 34( Valid Function Select 

HREAD 

HCS 

HUDS 
HWRITE, 

HRDY 

HDO-HD15 

 

Valid Data In 	 iyl IT 

    

Figure 10-8. Host Interface Timing - Write Cycle With Wait 
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Figure 10-9. Host Interface Timing - Read Cycle With Wait 
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10.3.3 Indirect Accesses of Local Memory 

The host processor indirectly accesses GSP local memory by reading from or 
writing to the HSTDATA register. HSTDATA buffers data written to or read 
from the local memory. The word in local memory that is accessed is the word 
pointed to by the 32-bit address contained in the HSTADRL and HSTADRH 
registers. The pointer address is loaded into HSTADRL and HSTADRH by the 
host processor before performing one or more indirect accesses of local me-
mory using the HSTDATA register. 

The four LSBs of HSTADRL are forced to Os internally so that the address 
formed by HSTADRL and HSTADRH always points to a word boundary in 
local memory. Between successive indirect accesses of local memory using 
the HSTDATA register, the local memory address contained in the HSTADR 
registers can be autoincremented by 16. This allows the host processor to 
access a block of sequential words in local memory without the overhead of 
loading a new address prior to each access. 

During a sequence of one or more indirect reads of local memory by the host, 
the GSP maintains in HSTDATA a copy of the local memory word currently 
addressed by the HSTADRL and HSTADRH registers. Reading from 
HSTDATA returns the word prefetched from the local memory location 
pointed to by the HSTADRL and HSTADRH registers, and causes HSTDATA 
to be updated from local memory again. Writing to HSTDATA causes the 
word written to HSTDATA to subsequently be written to the location in local 
memory pointed to by the HSTADRL and HSTADRH registers. 

Two increment-control bits, INCR and INCW (contained in the HSTCTL reg-
ister), are set to 1 to cause the pointer address in HSTADRL and HSTADRH 
to be incremented by 16 during reads and writes, respectively. In preparing 
to use the autoincrement feature, the appropriate increment-control bit, INCR 
or INCW, is loaded with a 1, and the HSTADRL and HSTADRH registers are 
set up to point to the first location of a buffer region in the local memory. 

• When INCR is set to 1, a read of HSTDATA causes the address in 
HSTADRL and HSTADRH to be incremented before being used in the 
local memory read cycle that updates HSTDATA. 

• When INCW is set to 1, a write to HSTDATA causes the address in 
HSTADRL and HSTADRH to be incremented after being used in the lo-
cal memory read cycle that writes the new contents of HSTDATA to local 
memory. 

Loading the pointer address automatically triggers an update of HSTDATA to 
the contents of the local memory word pointed to. No increment of HSTADRL 
and HSTADRH takes place at this time regardless of the state of the increment 
bits. Each subsequent host access of HSTDATA causes HSTADRL and 
HSTADRH to be automatically incremented (assuming INCR or INCW is set) 
to point to the next word location in the local memory. In this manner, a series 
of contiguous words in local memory can be accessed following a single load 
of the HSTADRL and HSTADRH registers without additional pointer-
management overhead. 
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10.3.3.1 Indirectly Reading from a Buffer 

Figure 10-10 illustrates the procedure for reading a block of words beginning 
at local memory address N. Assume that the INCR bit in the HSTCTL register 
is set to 1 and the LBL bit in HSTCTL is set to 0. 

• In Figure 10-10 a, the host processor loads the 32-bit address N into 
HSTADRL and HSTADRH. 

• The loading of the second half of the address into HSTADRH causes the 
GSP host interface control logic to automatically initiate a read cycle on 
the local bus. This read cycle, shown in Figure 10-10 b, transfers the 
contents of memory address N to the HSTDATA register. 

• In c, the host processor reads the HSTDATA register, fetching the data 
previously read from address N. 

• The read of HSTDATA by the host processor causes the GSP to auto-
matically increment the contents of HSTADRL and HSTADRH by 16, 
as shown in d. 

• The contents of the new address are read into HSTDATA, as shown in 
Figure 10-10 e. This data will be available in HSTDATA the next time 
it is read by the host processor. 

The process shown in c through e repeats for every word read from GSP local 
memory. 
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Figure 10 -10. Host Indirect Read from Local Memory (INCR=1) 
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10.3.3.2 Indirectly Writing to a Buffer 

Figure 10-11 illustrates the procedure for writing a block of words to GSP 
local memory. The block begins at address N. Assume that the INCW bit is 
set to 1 and the LBL bit is set to 0. 

• In Figure 10-11 a, the host processor loads the 32-bit address N into 
HSTADRL and HSTADRH. 

• The loading of the second half of the address into HSTADRH causes the 
GSP host interface control logic to automatically initiate a read cycle on 
the local bus. This read cycle, which takes place in Figure 10-11 b, 
fetches the contents of memory address N into HSTDATA. 

• The data loaded into this register will not be used, however. Instead, the 
host processor writes to the HSTDATA register in Figure 10-11 c, over-
writing its previous contents. 

• In response to the host's write to HSTDATA, the GSP automatically ini-
tiates a write cycle to transfer the contents of HSTDATA to the local 
memory address N as shown in d. 

• Following the write, the GSP automatically increments the address in 
HSTADRL and HSTADRH to point to the next word, as shown in e. At 
this point the host interface registers are ready for the host processor to 
write the next word to HSTDATA. 

The process shown in c through e repeats for every word written to GSP local 
memory. 
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10.3.3.3 Combining Indirect Reads and Writes 

If the HSTDATA register in Figure 10-11 is read by the host processor fol-
lowing step e, the value returned will be the value that the host previously 
loaded into the register. The host must read HSTDATA a second time to ac-
cess data from GSP local memory. This principle is illustrated in Figure 10-12, 
which shows how the host interface performs when a write is followed by two 
reads. For this example, INCW=1 and INCR=0. 

• In Figure 10-12 a, HSTADRL and HSTADRH together point to location 
N in the GSP's local memory. The host processor is shown writing to 
HST DATA. 

• In b, the data buffered in HSTDATA is written to location N in memory. 

• The address registers are incremented in c. 

• In d, the host processor reads the HSTDATA register, which returns the 
value that the host loaded into the register in step a. 

• Reading HSTDATA causes a memory read cycle to take place in e, which 
loads the value from memory address N+16 into HSTDATA. 

• In f, a second read of HSTDATA by the host processor returns the value 
from memory address N+16. 
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Figure 10-12. Indirect Write Followed by Two Indirect Reads 
(INCW=1, INCR=O) 
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10.3.3.4 Accessing Host Data and Address Registers 

When the TMS34010 internal processor accesses the HSTDATA, HSTADRL, 
or HSTADRH register, no subsequent cycle occurs to transfer data between 
HSTDATA and local memory. Also, the address in HSTADRL and HSTADRH 
is not incremented, regardless of the state of the INCR and INCW bits. 

The host processor can indirectly access any register in the GSP's internal I/O 
register file by first loading HSTADRL and HSTADRH with the address of the 
register, and they writing to or reading from HSTDATA. 

No hardware mechanism is provided to prevent simultaneous accesses of the 
HSTDATA, HSTADRL and HSTADRH registers by the host processor and by 
the GSP internal processor. Software must be written to avoid simultaneous 
accesses, which can result in invalid data being read from or written to these 
registers. 

10.3.3.5 Downloading New Code 

The TMS34010 host interface provides a means of efficiently downloading 
new code from a host processor to GSP local memory. The host initiates this 
operation through the following process: 

• Before downloading, the host interrupts and halts the GSP by writing 
1s to the HLT and NMI bits in the HSTCTL register. The host processor 
should then wait for a period of time equal to the TMS34010 interrupt 
latency. (GSP hardware will reset the NMI bit if the nonmaskable in-
terrupt is initiated before the halt occurs.) 

• The code is then downloaded using the auto-increment features of the 

•

host interface registers. 

After downloading the code, the host should flush the cache as de-
scribed in Section 5.4.5, Flushing the Cache (page 5-26). 

• The nonmaskable interrupt vector is written through the host port to 
location >FFFF FEEO so that the new code will begin execution at the 
vectored address. 

• The NMI bit in the HSTCTL register should be set to 1 to initiate a non-
maskable interrupt. At the same time, the NMIM bit in the HSTCTL re-
gister should be set to 1. If the host does not need the current context 
to be stored on the stack, or if the nonmaskable interrupt was taken in 
the first step, the NMIM bit should be set to 1. Otherwise, NMIM should 
be set to 0. 

• The host restarts the GSP by writing a 0 to the HLT bit in the HSTCTL 
register. 

Setting the HLT and NMI bits to 1 simultaneously reduces the worst-case 
delay (compared to setting HLT only). NMI latency is the delay from the 0-
to-1 transition of the NMI bit and the start of execution of the first instruction 
of the NMI service routine. Halt latency is the delay from the 0-to-1 transition 
of the HLT bit and the time at which the GSP actually halts (see Section 
10.3.4). The maximum NMI latency may be much less than the halt latency 
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if a PIXBLT, FILL, or LINE instruction is in progress at the time of the NMI or 
halt request. An NMI request will interrupt instruction execution at the next 
interruptible point, but a halt request is ignored until the executing instruction 
completes or is interrupted. When NMI and HLT are set to 1 simultaneously, 
the GSP will have halted before beginning execution of the first instruction in 
the NMI service routine. Therefore, the delay from the setting the NMI and 
HLT bits to the time that the GSP actually halts is simply the NMI latency. 

10.3.4 Halt Latency 

The TMS34010 may be halted by a host processor via the HLT bit in the 
HSTCTL register. The delay from the receipt of a halt request to the time that 
the TMS34010 actually halts is the sum of five potential sources of delay: 

1) Halt request recognition 
2) Screen-refresh cycle 
3) DRAM-refresh cycle 
4) Host-indirect cycle 
5) Instruction completion 

In the best case, items 2 through 5 cause no delay. The minimum delay to due 
item 1 is one machine state. 

• The halt request recognition delay is the time required for the setting 
of the H LT bit to be internally synchronized after the low-to-high transi-
tion of the HRDY pin. 

• The screen - refresh and DRAM - refresh cycles are a potential source 
of delay, but in fact occur rarely and are unlikely to delay a halt. 

• The likelihood of a delay caused by a host - indirect cycle is small in 
most instances, but this depends largely on the application. It would 
only occur if the host had written to the data register just prior to writing 
to the HLT bit. The delay due to a single host-indirect cycle is two ma-
chine states, assuming no wait states. 

• The instruction completion time refers to the time required for an in-
struction that was already executing at the time the halt request was re-
ceived to complete. Note that the TMS34010 halt condition is entered 
only on instruction boundaries. This means that a PIXBLT, FILL, or 
LINE instruction that is already in progress will run to completion before 
the GSP halts. 

Table 10-2 shows the minimum and maximum times for each of the five op-
erations listed. The halt latency is calculated as the sum of the numbers in the 
five rows. In the best case, the halt latency is only one machine state. The 
worst-case latency is six machine states plus the delays due to host-indirect 
cycles and instruction completion. Table 10-3 shows instruction completion 
times for some of the longer instructions. However, a PIXBLT, FILL, or LINE 
instruction may take longer than the times shown in Table 10-3, depending 
on the size of the pixel array or line specified. Table 10-3 also shows the in-
struction completion time for a JRUC instruction that jumps to itself — the GSP 
may be executing this instruction if the software is simply waiting for a halt. 
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Table 10-2. Five Sources of Halt Delay 

Operation 
Latency (In States) 

MM Max 

Halt recognition 1 2 

Instruction completion 0 See Table 10-3 

DRAM-refresh cycle 0 2 
See Note 2 

Screen-refresh cycle 0 2 
See Note 2 

Host-indirect cycle 0 See Note 1 

Notes: 1) The latency due to host-indirect cycles depends 
on both the hardware system and the application. 
The delay due to a single host-indirect cycle is two 
machine states, assuming no wait states. 

2) DRAM-refresh and screen-refresh cycle times as-
sume no wait states. 

Table 10-3. Sample Instruction Completion Times 

Instruction 
Worst-Case Instruction 

Completion Time (In States) 

SP Aligned SP Not Aligned 

DIVS A0,A2 43 43 

MMFM SP,ALL 72 144 

MMTM SP,ALL 73 169 

PIXBLT, FILL, and LINE See Note 1 See Note 1 

Wait: JRUC wait 1 1 

Notes: 1) The worst-case instruction completion time is equal to the in- 
struction execution time less one machine state. 

2) The SP-aligned case assumes that the SP is aligned to a word 
boundary in memory. 

10-20 



Host Interface Bus - Reads and Writes 

10.3.5 Accommodating Host Byte-Addressing Conventions 

Processor architectures differ in the manner in which they assign addresses to 
bytes. The GSP host interface logic can be programmed to accommodate the 
particular byte-addressing conventions used by a host processor. 

This ability is important in ensuring software compatibility between 8- and 
16-bit versions of the same processor, such as the 8088 and 8086 or the 
68008 and 68000. The 8088 transfers a 16-bit word as a series of two 8-bit 
bytes, low byte first, high byte second. The 68008 transfers the high byte first, 
and low byte second. 

The HSTCTL register's LBL bit is used to configure the GSP host interface to 
accommodate different byte-accessing methods. The host interface is con-
figured to operate according to the following two principles: 

1) First, when a host processor with an 8-bit data bus reads from or writes 
to the HSTDATA register, it will access the high and low bytes of the 
register in separate cycles. The GSP will not initiate its local memory 
access until both bytes of HSTDATA have been accessed. 

2) Second, when HSTADRH and HSTADRL are loaded by the host, the 
GSP must not initiate its read of the local memory until the complete 
pointer address has been loaded into HSTADRL and HSTADRH. 

When LBL=0: 

• A local memory read cycle takes place when the host processor reads the 
high byte of HSTDATA, or writes to the high byte of HSTADRH. 

• A local memory write cycle takes place when the host processor writes 
to the high byte of HSTDATA. 

When LBL=1: 

• A local memory read cycle takes place when the host processor reads the 
low byte of HSTDATA, or writes to the low byte of HSTADRL. 

• A local memory write cycle takes place when the host processor writes 
to the low byte of HSTDATA. 

When the host processor is an 8088, for example, the GSP is typically con-
figured by setting the LBL bit of the HSTCTL register to 0. When configured 
in this manner, the GSP expects the HSTADRL register to be loaded first, and 
HSTADRH loaded second. Furthermore, the high byte of the HSTADRH re-
gister is expected to be loaded after the low byte. When LBL is set to 0, a local 
read cycle is initiated when the upper byte of the HSTADRH register is written 
to by the host processor. This permits the lower byte of HSTADRH to be 
loaded first without causing side effects. 
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10.4 Bandwidth 

One measure of the performance of the host interface is its data rate, or 
bandwidth. The bandwidth is the number of bits per second that can be 
transferred through the host interface during a block transfer of data to or from 
GSP memory. Assume that the host interface address register is programmed 
to autoincrement. The maximum data rate through the host interface can be 
expected to approach the bandwidth of the GSP's memory. For example, as-
sume a 50-MHz GSP and a memory requiring no wait states. The memory 
cycle time is about 320 nanoseconds (bandwidth = 50 megabits/second). 
The host's access cycle time at the host interface is somewhat longer than this 
due to certain additional delays inherent in the operation of the GSP's internal 
host interface logic. Also, the throughput of the host interface may depend 
on whether or not the GSP is halted. 

The bandwidth is calculated as the width of the host data path (16 bits) times 
the frequency of access cycles through the host interface. Given a continuous 
series of word accesses, with successive accesses occurring at regular inter-
vals, what is the minimum interval between host accesses that the interface 
can sustain without having to send not-ready signals to the host? (The GSP 
drives its HRDY output low temporarily to inform the host when the GSP is 
not yet ready to complete the host's current access.) 

First, when the GSP is halted, the host interface should support continuous 
accesses occurring at regular intervals no less than about 400 nanoseconds 
apart. As long as the host attempts to maintain a throughput no greater than 
this limit, delays due to not-ready signals will occur rarely, if at all. The 
bandwidth for this case is calculated in Table 10-4 a as approximately 40 
megabits per second. This value can be expected to vary slightly with sys-
tem-dependent conditions such as the frequency of DRAM-refresh and 
screen-refresh cycles. 

When the GSP is running, the host interface should support continuous ac-
cesses occurring at regular intervals no less than approximately 550 nanose-
conds. The bandwidth for this case is calculated in Table 10-4 as 
approximately 29 megabits per second. This value varies slightly with condi-
tions such as the frequency of DRAM-refresh and screen-refresh cycles, and 
also with the characteristics of the program being executed by the GSP. 

Table 10-4. Host Interface Estimated Bandwidth 

Assumptions Approximate Throughput 

GSP halted 
50-MHz GSP 
No wait states 

16 bits/transfer 
— 40 megabits/s 

400 ns/transfer 

GSP running 
50-MHz GSP 
No wait states 

16 bits/transfer 
— 29 megabits/s 

550 ns/transfer 
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10.5 Worst-Case Delay 
In some applications, designers must determine not only the effective 
throughput of the host interface, but also the delays that can occur under 
worst-case conditions. These conditions occur too rarely to affect overall 
throughput, but the important consideration here is not how often they occur, 
but that they can occur at all. First, with the GSP halted, the worst delay is 
given by the formula (6 + 2N) T, where N is the number of wait states per GSP 
memory cycle, and T is the local clock period (nominally 160 nanoseconds for 
a 50-MHz GSP). Second, with the GSP running, the worst delay is given by 
the formula (9 + 4N)T. The derivation of these formulas, summarized in Fig-
ure 10-13, may be helpful in illustrating the mechanisms of the host interface. 

	

2T 
	

Synchronization delay 

	

(2 + N)T 
	

Screen-refresh cycle 

	

+ (2 +  N)T 
	

DRAM-refresh cycle 

	

(6 + 2N)T 
	

Worst-case delay (total) 

(a) Worst-Case Delay with GSP Halted 

	

2T 	Synchronization delay 

	

(1 + N)T 	GSP CPU read 

	

(2 + N)T 	GSP CPU write 

	

(2 + N)T 	Screen-refresh cycle 

	

+ (2 + N)T 	DRAM-refresh cycle 

	

(9 + 4N)T 	Worst-case delay (total) 

(b) Worst-Case Delay with GSP Running 

N = Number of wait states per memory cycle 
T = Local clock period (nominal 160 nanoseconds for 50-MHz device) 

Note: These are worst-case delays and have negligible effect on performance. The case 
shown in a, for example, could be expected to occur less than once per thousand 
(0.1 percent of) host accesses in a typical system. 

Figure 10-13. Calculation of Worst-Case Host Interface Delay 

Consider case a, in which the GSP is halted, first; the worst-case delay is cal-
culated as the sum of the three delays. The first of these delays is the time 
required to internally synchronize the host interface cycle to the GSP local 
clock. The host's signals are generally not synchronous to the GSP local 
clocks. A signal from the host must therefore be passed through a synchron-
izer latch (part of the GSP on-chip host interface logic) before being used by 
the GSP. The delay through the synchronizer is from one to two local clock 
periods (1 T to 2T), depending on the phase of the host clock relative to the 
GSP's local clock. The second and third delays in Figure 10-13 represent the 
time needed to perform a screen-refresh cycle followed by a DRAM-refresh 
cycle. The arbitration logic internal to the GSP assigns these two types of 
cycles higher priorities than host-requested indirect accesses. (Screen refresh 
has a higher priority than DRAM refresh.) Thus, a host access requested at 
the same time as one of these cycles must wait. The worst-case assumption 
is that a screen-refresh cycle is generated internal to the GSP on the same 
clock edge at which the request for the host access arrives. Furthermore, a 
DRAM-refresh cycle is requested during this same clock edge or during the 
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next 1 + N clock edges. An equivalent delay occurs in the case in which a 
DRAM refresh and host access are requested on the same clock edge (the 
DRAM refresh wins), and a screen refresh is requested on a later clock edge 
before the host access can begin. This case is not shown in Figure 10-13, but 
the delay in this instance is also (6 + 2N)T. In a typical system, DRAM-re-
fresh cycles consume about 2 percent of the available memory bandwidth, and 
screen-refresh cycles take about 1.5 percent (using VRAMs). The probability 
of either sequence of events is therefore very small (less than one in a thou-
sand, assuming N = 0; that is, no wait states), and the performance degrada-
tion due to these unlikely events is negligible. 

Now consider the case in which the GSP is running. Host accesses are of 
higher priority than GSP instruction fetches and data accesses, but still of 
lower priority than DRAM-refresh or screen-refresh cycles. The worst-case 
delay is calculated as the sum of the five delays indicated in Figure 10-13 b. 
This assumes that the GSP begins a read-modify-write operation on a memory 
word (this is performed as a read cycle followed by a separate write cycle) just 
one clock before the GSP receives the host access request. The GSP CPU 
read cycle is actually (2 + N)T in duration, but since it begins one clock before 
the host access is requested, only (1 + N)T is left in the cycle. The GSP's 
local memory controller treats a read-modify-write operation as indivisible; 
once the read has started, no other requet can be granted until the write 
completes. The write cycle is (2 + N)T in duration. Again, assume that 
sometime before the write cycle does complete, screen-refresh and 
DRAM-refresh cycles are also requested. The probability of this case is so-
mewhat more difficult to calculate than that of Figure 10-13 a, since the fre-
quency of read-modify-write operations is very program dependent. This 
sequence of events rarely occurs, however. 
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